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ABSTRACT 

For measures /~ on the circle T the quantities limsup.-~+oo lfl(n)[, 
lira sup l/~(n)[n-,-oo need not be equal; it is shown, however, that they are 
continuous with respect to each other when/~ varies on bounded subsets of 
M(T), the space ofmeasures on T. It is also shown that measures/~ which 
are e-almost idempotent (i.e. lira suPl. I-,oo [fi(n)--/~(n) 2] < e) are the sum of 
an idempotcnt measure and of a measure v satisfying lim suplnl~o o [9(n)] < 2e 
provided e is small enough (as a function of H,un). 

1. Introduction.  We denote  by  T the circle g roup  and by  M(T) the  Banach  

space o f  finite complex  Borel  measures  on  T. I f  II~M(T), the  Four ier -St ie l t jes  

t r a n s f o r m  o f /~  is the func t ion /~  defined on  the  g roup  Z o f  integers by  

~(n) = fr e-i"'cl~(t), n ~ Z .  

A theo rem essentially* due to R a j c h m a n  s ta tes :  

l ira /~(n) = 0 implies  lira /~(n) = 0 .  

I f  # is d isc te te , /~(n)  is a lmos t  pe r iod ic  on the integers and  

limsupl (.)l = limsupl (.)l = sup I- 

I f  the suppor t  o f /~  is a given He l son  set then,  [-7], 

l im sup [/~(n)[, l i m s u p  [p(n)]  

are both  equivalent  to II l' It- 

, Rajchman's theorem ([6]) states that for /t ~ M(T) limn-~oo~(n)= 0, if, and only if 
limn ~o~9(n) = 0 where dv = [d/t[. Since [9(n)I is an even function of n we have: lim,-.oJ2(n) 
= 0 ~ e .  l i m , ~  o~ 9 ( n )  = 0 ~:~ l i r a , .  _ ~o 9 ( n )  = 0 . e ~  l i r a , - .  - ~o ~ ( n )  = 0 .  

Received January 27, 1970. 

213 



214 K. ~LEEUW AND Y. KATZNELSON Israel J. Math., 

These facts led us to ask whether the two quantities 

lira sup t p(n) I lim sup I ! 
/1"~ + oO rl ' -* - -  OD 

are related in general. That they need not be equal, we show by example in §4 

Theorem 1, which we state below and prove in §2.2, shows, however, that they 

are continuous with respect to each other in bounded subsets of M(T) .  It is a quan- 

titative generalization of the theorem of Rajchman. 

In what follows II" rl is always the measure norm in M(T) .  

THEOREM 1. For every e > 0 there is a 6 = 6(e) > 0 having the fo l lowing 

property: I f  # ~ M ( T )  satisfies 11#[] < 1  and 

lim sup I#(n)] < 3, 
n - *  "t- oo 

then 

limsup ]~(n)[ < 5. 

Corollary 1, which we state and prove in §2.3 is a generalization of Theorem 1. 

It states that, subject to a bound on 1]/~ [], ~(n)must  be close to some finite set 

{~l,'",~m} of complex numbers for In I large if/~(n) is sufficinetly close to that 

set for n large and positive. 

The proof we give for Theorem 1 is in reality quite general. In §2.4 we indicate 

an abstract setting in which this argument is valid. 

Helson's identification of idempotent measures on T shows the following: 

Let # ~ M(T) be idempotent, that is # • p = p,  or equivalently, 

/~(n)  2 = # ( n ) ,  n e z .  

Then each of the two subsetts 

{n:#(n) = 0} {n:#(n) = 1} 

of Z differ from periodic sets by only a finite number of elements (see [3]). Using 

Theorem 1, we give a generalization of this to measures that are "almost ides-  

potent".  Our result is stated as Theorem 2 and is proved in §3.1. Rather than 

state Theorem 2 here we give one of its consequences. 

COROLLARY 2. For any C > 0 there is a constant ~ = ~(C) > 0 satisfying the 

fol lowing: Suppose that It = M ( T )  has I[#1[ < C and 

lim sup [/~(n) -/~(n) 2 [ < z. 
Inl--,oo 
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Then each of the subsets 

of Z differ f rom periodic sets by a finite number of elements. 

The constant ~ of  Corollary 2 cannot be chosen to be independent of the bound C. 

We show this in §4 by giving examples of measures # with 

/~(4in+ 1) = 1 ,  m = 1 , 2 , 3 , . . . ,  

and /2(n) arbitrarily small for n not of the form 4in+l .  

2. Behavior o f / 2  at infinity. 

2.1 Our proof of Theorem 1 depends on the following lemma. 

LEMMA 1. For every ~ > 0 there is a 6 = 6(~) > 0 having the following 

property: Let X be a set, # a complex measure on some a-algebra of subsets 

of X having measure norm H # ]I <= 1. Let ~p be a complex valued #-measurable 

function on X with [cp(x) l < 1 (a.e. I F[). I f  

fl, x ~o 12m~od# < 6,  m = 1,2,. . . ,  (1) 

then 

(2) 

PROOF. 

x cpdu < 5. 

Fix e > 0. Put M(e) = 4e "2 log2/e and p~(x) = 1 - ( l - x )  M'*). We 

clearly have 

(3) O < p ~ ( x ) <  1 for 0 < x <  1; 

(4) p,(0) = O; 

(5) sup p , ( x ) -  I : < x < 1 < - f  . 

Because of (4), p, has no constant term, and thus is of the form 

M{ e) 
p~(x) = E C~,mX'. 

m=l 

We define 6 = 6(8) by 

-28 ,,in=lM(*) ) -I 2 6(=) = {Z,lco,inl -~ - 2 - ~ ( ' ) .  
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Suppose now that X ,  # and ~o are as in the statement of the lemma and that 

(1) holds. We shall prove (2). 

Because of (5) and the assumption I~(x)l =<1 (a.e. I~l) we have 

[(p.(I ~ I% - 1)91 =< ~/2 and, since II ~ [I --< 1, 

- 

that is 

LL L (7) Pe([ [2)cpd# - q~d# < 

Furthermore, because of (1) and (6), 

fx M(~) fx 
m = l  

< :c I c~,m 15(5) < m=l 4 

The inequality (2) is now a consequence of (7) and (8). This completes the proof 

of Lemma 1. 

Note that we have proved more than Lemma 1, as we have not used the full 

strength of assumption (1) but only 

yx]~O[a"~od~ < 5, = 1,2,.- . ,M(e).  i n  

The statement of Lemma 1 will be adequate for our purposes. 

2.2. We shall next prove Theorem 1. Fix ~ and take 5 = ~5(~) to be that given 

by Lemma 1. Let ~t be a measure in M(T) with [I # [I < 1 and 

(9) lim sup I~(n) l < 6. 
n " *  "1" O0 

Let 

= limsup I/~(n)[" 
/1---~ --  co 

We shall prove that a < e. By multiplying # by a complex scalar of modulus 1 

if necessary, we may assume that there is an increasing sequence 

of positive integers so that 

(lO) 

{nj: j = 1,2,...} 

= lira p ( - n j ) .  
j ~ o o  
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Consider the sequence 

{e~"~t:j = 1,2,.. .} 

as a subset of/.,2(I # I)" This sequence is bounded in L2(I # i) an thus has a sub- 

sequence converging in the weak topology of Lz(I # I) to a function q~. As a con- 

sequence, because of (10) and 

-n~)  = f e'"Jtdtt(t), j = 1 ,2 , . . . ,  D( 
J r  

we have 

r C~d# = ~.  

Let u be any positive integer. Then q~ is in the weak closure in LZ(I Ix l) of the 

set Eu of exponentials defined by 

E,, = {ei"i':j >= u}. 

The weak closure of a convex set in a Banach space is identical with its norm 

closure. (See p. 422 of [2]). Thus q~ is in the norm closure in LZl#[) of the set 

co E, = {g:g  a convex combination of functions in E,}. 

As a consequence, we can find a function g, in co E, which satisfies 

fx Ig.-< l:dl ,l < 
1. 
u 

We have constructed a sequence {g~: u = 1, 2, ...} of trigonometric polynomials 

satisfying 

(11) 
/ .  

lira L lg.-<°l al <l = 0 
U T  

and 

(12) Igxol 1, ,, =1,2,.. . .  
Because of (11), there is a subsequence of {/ , :  u = 1,2,...} converging to ~o 

almost everywhere with respect to [tt[. Thus, because of (12), I~0(t)[ __< 1, (a.e. 

I 1). 
We shall now apply Lemma 1. Because of Lemma 1, in order to conclude that 

we need to show that, for any positive integer m,  
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(13) I fr q92m+t~p2mdpl < t~. 

Fix m.  Because of (11) and (12), as u ~  m ,  

converges in the norm of L2(I/l l) to 

2,,,+ I+~2m-.t 

As a consequence, for any ? > 0, there is a positive integer N so that 

g~ g~ g o a # -  q~2m+l~o2md# < ?  for v > N.  

Fix N ,  and for any v __> N consider the trigonometric polynomial 

( 1 5 )  2 m + 1  - Z = - t  - 
g ~  g/~ go" 

Since go e co E o and gN e co EN, the polymonial (15) is a convex combination 

(16) g~m+t~2m-lg+ = ~ bo,,e-+., 
n 

of exponential functions. Because of (9), we can find a positive integer M so large 

that 

(17) [/~(n)[ < 6, all n > M.  

Since 2 m +  l = 2 r a - 1  g~ gN is a trigonometric polynomial and go ~ co Co, it is possible 

to choose v so large that in (16), b+,, = 0 unless n > N.  For such v, 

: r  g2m+tg2ra-lgvd/t = ~n b~,, fr e-i"tdlt(t) 
(18) 

-- l x b,,,./2(n)l bo , . lP(n) l<a ,  
n /1 

because of  (17). Since, in (14), ? was arbitrary, (14) and (18) together show that 

(13) holds. This completes the proof of Theorem 1. 

2.3. The following corollary is a generalization of Theorem 1. 

COROLLARY 1. Let C > O. Suppose that ~t, ..., or,, are complex constants with 

I < c , :  = 1, . . . ,m.  Let 8 > O. Define the constant a' by 

5' = (2C)'5((2C)-%), 

where 5 is as in Theorem 1. l f  ~ M ( T )  satisfies II#ll < C and 
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lim sup I (a(n) - ~1)"-  O ( , 0  - ~,n) [ < , r ,  
t / ~  -.I- o 0  

then 
lim sup [/2(n) -- ~1)"" (/l(n) - ~,-)l < e. 

t l - -*  - -  o 0  

PROOF. Apply Theorem 1 to the measure 

(2C)-m(#-   lao) , . . .  • -  ma0), 

where 6o is the unit point mass at 0. 

2.4. We next indicate a general setting in which an analogue of  the proof  

of Theorem 1 can be given. Suppose that X is a compact Hausdorff space, A 

an algebra of  continuous functions on X ,  [[. I[a an algebra norm on A satis- 

fying Ilf l l , -p < Ilfll4 for a l l f E A .  Assume that f ~ A  implies l e A  and 

II f = II f I I , .  Let d + be a collection of  linear subspaces of  A, linearly ordered 

under inclusion. For B e d + ,  denote { f : f e B }  by] B and define ~¢_ to be 

{/~: B e ~¢+}. The crucial property we assume for ~¢+ is the following swallowing 

property: 

For each f ~ A  and B1 e d + ,  there is B 2 e ~¢+ so that {fg: g eB2} c B1. 

Let # be a finite Borel measure on X .  For B e d +  or d _ ,  define 11 ~ I1, to 

be the norm of/~ as a linear functional on B; i.e., 

II. II.  s.. { fx,,.  II, 
Define I[ # [[ + and I[ # [[- by 

IIP[]+ = i n f { [ ] p l [ n : B e d + } ,  

II#[]- = i n f { l [ p n [ l : B ~ ¢ _ } .  

A proof  analogous to that of  Theorem 1 establishes the following: 

PROPOSITION. Let 6 = 6(e) be as in Lemma 1. I f  # is a Borel measure on X 

with measure norm I[#l[ < 1 and 

then 

For the following choices, this proposition reduces to Theorem 1. Take X = T, 

A the algebra of trigonometric polynomials on T, N" II, defined by 

11 ~:a°e"" h = 21a°[. 
n n 
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For ar~y positive integer N ,  let BN be the set of  trigonometric polynomials of 
the form 

an eint . 

n>=N 

Let d +  = {Bt¢: N = 1,2,. . .}. In this case, 

IIP liB,, = sup{l/~(n) l: n > N}, 

SO 

Similarly 

I1 1[+ = limsup 
n---~ - k  o o  

l[ tt H- = lim sup I~<">1, 
n - - +  - -  o 0  

so the proposition reduces in this case to Theorem 1. 

Taking X to be a compact abelian group with ordered dual (in the sense of 

either [1] or [4]), analogous choices lead to a proposition relating the behavior 

of a Fourier Stieltjes transform at " +  ~ "  with its behaviour at " - o ~ " .  

Taking X to be the torus T x T and BN to be the space of trigonometric poly- 

nomials of  the form 

(1 0 t ( n x + m y )  
~ n ' m  ~ 

n ~ N  
m > N  

the proposition yields a relationship between 

lim sup [ p(n, m)[ 
n---~ -I- oO 

m-- -~  q -  o o  

and 

lim sup [/~(n, m) I • 
n - - ~  - -  OO 

m ---~ ~ <3O 

3. Almost idempotent measures 

3.1. The main result of  Section 3, Theorem 2, is a quantitative generalization 

of Helson's characterization of the idempotents of M ( T ) .  

THEOREM 2. For any C > 0 there is a 6 = fi(C) > 0 satisfying the following: 

Suppose that # ~ M ( T )  has Ii ll < c and 

lim sup [/~(n) -/~(n)2 [ < 6. 
i~l-*oo 
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Then 

# = 1'1 + P2, 

where It, is idempotent with rt  periodic and 

lim sup I rE(n) I -<- 2 lira sup I r(n) - r(n) 2 I" 

The proof  of Theorem 2 consists of a reduction to discrete measures and con- 

tinuous measures. We deal with the continuous case by means of  the following 

lemma. 

LEMMA 2. For any C > 0 there is a ~ = ]:(C) < 1/100 satisfying the follow- 

ing: Suppose that 2 e M ( T )  is a continuous measure with II ll < c and, for 

I n I su ciently large, 

1I(n) 1<7 or Rei(n)>l-y. 
Then 

is finite. 

We shall prove Theorem 2 by assuming Lemma 2 and then later give a proof  

of Lemma 2 in §3.2. 

Fix C. We take a = a(C) to be 

(19) 6 = - -  
~(c ~) 

28 ' 

where ~, is the function of  Lemma 2. Let # 6 M(T)  be a measure with II # l[ < c 

and define tr by 

(20) tr = lim sup [r(n) - r(n) z ]. 
1,1-~oo 

We shall show that the assumption 

(21) tr < 

leads to the conclusion of  Theorem 2. Note that y(C 2) < 1/100, so a <  1/1000. 

Let # =/~c +/~a be the decomposition of # into its continuous and discrete 

parts. We first show that #a is "near ly"  idempotent in the sense that 

(22) s u p [ r i d ( n  ) --  fld(n)2 [ ~ 4o'. 
n 

Because of  (20), there is a constant No so that In [ > N O implies r(n)  is within 

2a of  either 0 or 1, Since #c is a continuous measure, the mean value of  the func- 
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tion I/~c [2 on Z is 0. (See p. 42 of [5].) Thus, there is a set J of integers having 

density zero so that 

I c(n)l<0., n J. 

As a consequence, if n ~ J and ] n [ > No, then g(n) = I~a(n) - go(n) is within 

30. of 0 or 1, and thus 

(23) [ fta(n ) -- # (n)21 < 40., I n I > No, n ~ J .  

Since/~a is an almost periodic function on Z ,  (22) follows from (23). 

We next apply (22) in order to construct the idempotent measure #1. Since 

40. < 1/20, Z is the disjoint union of the two subsets 

Zo = {n: I d(n){ < 1/to} 
and 

Z ,  = {n:l /~a(n)-  11 < 1/10}. 

Because #a is almost periodic on Z ,  any 1/lO-almost period for/~a must be a period 

for each of the sets Z o and Z 1 . Take #1 to be the idempotent measure in M ( T )  

defined by 

0, n e Z  o 
(24) /21(n) = 1, n ~ Z 1  

Because of (22), for any integer m ,  ~a(m) is within 50. of either 0 or 1. In the first 

case, /~(m) = 0 and in the second, /21(m) = 1. This proves 

(25) sup I/2a(n ) - /~l (n)  I < 50.. 
11 

If  #2 is defined by #2 =/~  - #1, to complete the proof of Theorem 2 it remains 

only to show that 

lim sup I/~2(n) [ < 20.. 
Inl--,oo 

Now, by (20), (24) and the definition of #2 it is clear that/~2(n) is, for large 

I n [, within 20. of - 1 , 0 ,  or 1; so that it is enough to prove that 

(26) lim sup[/~2(n)l < 12o-. 
In[ '- 'oo 

Since/~2 = # - #1 = (# - #a) + (/aa - #1) = #c + (#a - #1), 

limsup[/~2(n) I < limsup I/~c(n)[ + sup I/~d(n) - /~ l (n) [ .  
I n l - ' ~  Inl-~ ~o n 

Hence, because of (25), the proof of (26) and thus of Theorem 2 will be complete 

when we have shown that 
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(27) lira sup I ~%(n) I < 70.. 

We shall prove (27) by the use of Lemma 2. Because of  (20), there is a constant 

Mo so that 

[ f i (n)]<20.  or [ f i ( n ) - l l < 2 a  for [ n [ > M  o. 

We have also seen that 

I x.)l =< 50. or I/~a(n)- 11 -< 50., all n ~ Z .  

Thus, since #c = / . t -  #d, 

(28) [ / ~ ( n ) + l  1<70. or ] /~(n)]<7o" or [ f i ~ ( n ) - I  t<70 .  f o r [ n [ > M  o. 

Let 2 be the continuous measure gc * #~, so ~.(n) = tic(n) 2 , for all n ~ Z ,  and 

11 11 --< Then 

(29) 1i(n)1<140. or 1~(.)-11<14~ for lni>Mo 
follows from (28). By Lemma 2, the set {n:l ~'(n) I = 1/100} is finite. But 

{n:[,~.(nl[ >= 11100} = {n:l/2c(n) I >= 1/10}, 

so that {n:[/l~(n) [ __> 1/10} is finite, and (27) is a consequence of (28). This com- 

pletes the proof  of Theorem 2. 

3.3. We now proceed to the proof  of Lemma 2. There is no loss of generality 

in assuming that the constant C is an integer. Also, we may assume 2 to be a real 

measure, considering otherwise the measure q = 2 Re 2, for which 

(30) O(n) = 2(n) + 2 ( -  n), n ~Z. 

Thus, if we find 71(C) for real measures, then 

(31) ?(C) = ½71(2C) 

will work for arbitrary measures. 

Because of  Theorem 1, there is a constant tr(C) so that if q EM(T) satisfies 

II'l II < c and 

then 

limsup]O(n)[ =< 0.(C), 
n -+  - -  o~  

lim sup [ 0(n)[ < 1/10. 
1V-+ -t- Q0 
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We define ~ = ~1(C) by 

(32) yl(C) = min(tr(C), Ce-l°c). 

Suppose now that 2 is a real continuous measure with II 2 II < C and satisfying 

(33) I~(n) l < y  or R e ) , ( n ) > l - y  for Inl > N o .  

We shall prove that the set 

(34) (n: I (n)l _= 
is finite by assuming that it is infinite and deriving a contradiction. Since the set 

(34) is assumed infinite and (33) holds, the set 

(35) {n: ] n ] > No,  Re ~(n) > 1 -- ~} 

is infinite. The measure 2 is real, and thus 

(36) ~ ( -  n) = )~(n) n ~ Z .  

As a consequence, since (35) is infinite, the set A of positive integers defined by 

(37) A = {n:n > No, Re~,(n) > 1 - ~} 

must also be infinite. 

The measure ;t is continuous, so the function [~,]2 has mean value 0 on Z .  

(See p. 42 of [5].)As a consequence, the set A has density 0 in Z .  Thus it is possible 

to find a sequence {nk: k = 1, 2,.. .} of  positive integers in A having the following 

property: For each k, the integers in the list 

(38) n k - -  ]¢ ,  n k - -  k,  -[- 1 ,  n k - l¢ - ~  2, ..., n k - -  1 

are not in A. Because of (33) and (37), for every integer m occurring in one of  

the lists (38), l < r .  

By taking a subsequence of  the original sequence (n~: k = 1, 2,-..} if necessary, 

we may assume that the sequences 

(e-i"~t2: k = 1,2,...} 

in M(T) converges in the weak* topology of M(T) to a measure 20. Since 

e-g"'t2 converges weak* to 20 in M(T), 

(39) lim 2(n + nk) = ,~o(n), n ~Z .  
kooo 

In other words, the sequence 

{~(" + rig): k = 1,2, . . . )  

of  translates of ~ converges pointwise on Z to the function ~o. 
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Because of (33) and (39), if m is any integer, one of the two alternatives 

I o(m)l =< (40) 

or  

(41) 

225 

Re ~,o(rn) => 1 - y  

must hold. We show next that the first alternative (40) must hold if m is either 

a negative integer or is a sufficiently large positive integer. 

Suppose that m is negative. For each k > I m I, nk + m occurs in the list (38), 

and thus I~(nk + rn)[< y. As a consequence, because of (39), [ ~,o(m) [ =< y. This 

proves that 

(42) 12o(n)] < y, n = - 1 , - 2 , - 3 , . . . .  

Assertion (42), together with (32), the definition of a(C) and the fact that 

[12o 1[ < ][ 211 < C shows that 

lim sup [~(n)[ < 1/10. 
n--* + O0 

As a consequence, if m is a sufficiently large positive integer, the second alter- 

native (41) is impossible, so (40) must hold. Because of our conclusions about 

~.o(m) for both positive and negative m,  we have the following: There is a positive 

integer N so that 

(43) I]o(m)l __< y, all m~Z,  Is]  > N. 

From (39) and (43) we conclude that, if m is an integer with ]m] > N ,  then 

]i(nk + m)[ < 2y 

if k is large enough. As a consequence, if M > N ,  for k sufficiently large, 

[~(ng+m) 1<2y  if N < l r n [  < M .  

Equivalently, if M > N,  then 

]~ (n ) [<Zy  if N < l n - n k [ < = M ,  

for k sufficiently large. 

Using this fact, we can choose a finite sequence 

{mj:j = 1,2 , . . . ,K},  K = 1 0 0 C  2 , 

from {rig: k = 1,2, "-'} which has the following properties 

(44) m 1 > N; 
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(45) mj > 3m j_ 1; 
j - 1  

(46)  I ~ ( n ) l < 2 ~  if N<ln-mjl< Zm~. 
k = l  

We use the sequence {mr: j  = 1,.- . ,K} to construct the finite Riesz product 

(47) qo(t) = I-[ l + - - c o s m f l  

(see p. 107 of [5] for the basic properties of Riesz products.) Each term in the 

product (47) has sup norm no larger than (1 + K - t )  1/2, so 

(48) II q~ ]l ~ < (1 + K-1)K]2 < e. 

Each term in the product (47) has norm 1 + K  -1/z in the Banach space A(T)  

of functions having absolutely convergent Fourier series. Thus 

(49) II ~ IIA,~, -- (1 + K - ' / z )  K < e "m = e x°c 

We shall obtain our contradiction by integrating the Riesz product q~ with 

respect to the measure 2. Because of (48) and II ~ II --< c ,  

(50) f ~  l , ~oa~ = l l~l l~l lz l[  < eC. 

The Parseval formula gives 

(51) , ~z 
K 

> } ~ (O(rnj).~(-rn,)+ O(-rn,)~.(rnj) - i y~ ~(n)~ . ( - -n ) ,  
j = l  , ~ J  

where J is the complement of {rnx, - m l , ' " ,  mK,--mK} in Z. As a consequence of  

condition (45), there will be no cancellat on when the terms of  the product (47) 

are multiplied out, so 

i - l / z  
(52) 0(m j) = 0 ( - m  j) = ~ K  . 

Because each mj. is in A, which has been defined by (37), and (36) holds, 

(53) Re 2(m j) = Re 2 ( -  rnj) > 1 - 7, j = 1,-.- ,K. 

Using (52) and (53), we see that 

K 

Z (q~(mj)i(- mr) + q~(- m j)I(%) 
(54) j = 1 

>__ f fK-(1 - 2~) = 10 C (1 - 2y) .  
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If  n is an integer in J with ~(n) # 0, then, because of (47), n must be of the 

form 
~., e:rnj, e j = 0 ,  1 or - 1 ,  

j = l  

with ej # 0 for at least two values o f j .  Because of (44), (45), (46) and (36), for 

such an integer n,  

] ~(--n)[ < 2 y .  

i d ~ d  n n 

(55) 
< 2? ]l ~ []a(z~ < 2y e*°C. 

Combining (50), (51), (54) and (55), we obtain 

(56) eC > 10C(1 - 27) - 2ye loc = 10C - 20Cy - 2ye loc. 

Because of (32), 7 < Ce-l°c ,  and thus (56) yields 

eC > 10C - 20CZe - l ° c -  2C, 

which gives the contradiction 

e > 8 -  20Ce-toc.  

This completes the proof of Lemma 2. 

3.4. We indicate here two ways in which Theorem 2 can be extended. 

First, by applying Theorem 1 to the measure # -  # .  #,  the assumption 

lim sup I/i(n) - / i ( n )  2 t < a 
i,i-+oo 

can be replaced by the one-sided assumption 

lim sup ]/i(n) -/~(n) 21 < 6 ' ,  
n--+ -t- ao 

for appropriate a ' .  

Second, Theorem 2 has as consequence a proposition bearing the same relation 

to it as Corollary 1 does to Theorem 1. The proposition states that, subject to a 

bound on 11 # [1, if 

lim sup l (/i(n) - ~ ) . . .  (/i(n) - am) I 
1,1-.oo 

is small enough, then/1 is close to a periodic function on Z taking only the values 

{cq,...,am}. The proposition can be proved by reduction to Theorem 2 in a 

Thus, by (49), 
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manner analogous to the way in which Corollary 1 was reduced to Theorem 1. 

We omit the details. 

4. EXAMPLES 

The aim of this section is the construction of the two examples of measures 

mentioned in the introduction. The first, #2, satisfies 

(57) lim sup !/12(n) I # lim sup [/12(n) [. 
n"* + O0 n---~ -- oo 

The second,/~,,  shows that the constant 3 of Theorem 2 cannot be chosen to be 

independent of the bound C. 

Let nj = 4 j + 1 and ~q be the measure corresponding to the Riesz product 

f i ( 1  - s i n n f l ) .  
j = l  

(See p. 167 of [5] for a discussion of Riesz products.) Then 

/11(0) = 1 ,  /11(n j) = i/2, /11(-- n j) = - - i / 2 ,  

1/11(n)1 _< 1/4, all other n. 

Let /z2 = 6 o -  2i#1, where 6 o is the unit point mass at 0. Then 

/12(0 ) = 1 - 2 i ,  /12(n/) = 2, /12(-n,) = 0, 

[/12(n) 1 ____ 3/2, all other n,  

which proves (57). 

Taking r/ to be normalized Lebesgue measure on T, so 

~(0)= 1, ~(n)=0 if n # 0 ,  

we define /~z by 

= - ( 1  - 

Then 

/13(0 ) = 0, /13(ns) = 1, [/13(n) 1 < 3/4, all other n.  

Let e > 0. Choose m so (3/4) m < 8. I f  #4 is the m-fold convolution of/~3 with 

itself, then /14 = (/13) m, so 

/1,(n1) = 1, j = 1 ,2 , . . . ,  

[/1,(n)l < e, all other n. 

Since nj = 4 J + 1, this shows that the constant 3 of Theorem 2 cannot be chosen 

to be independent of the bound C. 
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